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Abstract

When the treatment under evaluation is continuous rather than binary, the marginal causal
effect can be reported from the estimated dose-response function. Here, regression methods
can be employed that specify a model for the endpoint, given the treatment and covariates.
An alternative is to estimate the generalised propensity score (GPS), which can adjust by the
conditional density of the treatment, given the covariates. With either regression or GPS ap-
proaches, model misspecification can lead to biased estimates. This paper introduces a machine
learning approach, the “Super Learner”, to estimate both the GPS and the dose-response func-
tion. The Super Learner selects the convex combination of candidate estimation algorithms, to
create new estimators. We take a two stage estimation approach whereby the Super Learner
selects a GPS, and then a dose-response function conditional on the GPS. We compare this
approach to parametric implementations of the GPS and regression methods.

We contrast the methods in the Risk Adjustment In Neurocritical care (RAIN) cohort study,
in which we estimate the marginal causal effects of increasing transfer time from emergency
departments to specialised neuroscience centres, for patients with traumatic brain injury. With
parametric models for the outcome we find that dose-response curves differ according to choice
of parametric specification. With the Super Learner approach to both regression and the GPS,
we find that transfer time does not have a statistically significant marginal effect on the outcome.
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1 Introduction

Public policy-makers may be interested in evaluations that estimate the causal effects of

treatments measured on a continuous scale. For example, evaluations may attempt to esti-

mate the marginal causal effects of alternative financial incentives for health care providers,

different levels of taxation on addictive substances, and increasing doses of a new pharma-

ceutical. In such settings, the expected outcome at alternative levels of the treatment can

be reported from the estimated dose-response function. When estimating such dose-response

functions, the key identifying assumption is that all systematic differences between units

that received different levels of the treatment, in both observed and unobserved variables

that explain the outcome, have been adjusted for. Such adjustment can be performed with

regression, which models the outcome as a function of the treatment variable and observed

covariates. Regression approaches can be simple, for example ordinary least squares regres-

sion, or can take more flexible forms such as fractional polynomials (Royston and Altman,

1994; Royston et al., 2006) or generalised additive models. Here a general concern is whether

the regression model is correctly specified (Imai and Van Dyk, 2004).

The generalised propensity score (GPS) approach has been proposed (Imbens, 2000; Hi-

rano and Imbens, 2004) as an alternative to regression for evaluating continuous or multi-

valued treatments. Both the standard regression method and the GPS approach assume

"unconfoundedness", or that adjusting for observed covariates is sufficient to achieve indepen-

dence between potential outcomes and the treatment level received. As with the propensity

score for binary treatments, rather than adjusting for a vector of covariates, the GPS adjusts

for a one-dimensional score, the conditional density of treatment, given baseline covariates.

Hirano and Imbens (2004) proposed the GPS for inclusion in a regression model of the out-

come as function of the treatment and the GPS. Compared to the multivariable regression

approach, this method offers the potential advantage of having to specify the outcome model

as a function of only two covariates. This approach has been followed by subsquent empirical

work (Bia and Mattei, 2008; Bia et al., 2011; Kluve et al., 2012). Alternative implementa-

tions of the GPS include a kernel weighting approach proposed by Flores et al. (2012), and

using the GPS for inverse weighting of marginal structural models (Robins et al., 2000). Imai
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and Van Dyk (2004) introduced a similar concept, the "propensity function" for estimating

the average treatment effect in strata defined by the propensity function. Yang et al. (2014)

develop methods of matching and classification on the GPS, to estimate the effects of multi-

valued tratments. In this paper we consider further the approach proposed by Hirano and

Imbens (2004), for continuous treatments.

A general challenge with the GPS approaches proposed is the specification of the outcome

and GPS models. For the outcome model, previous studies have proposed using either fully

parametric models with polynomials (Hirano and Imbens, 2004; Bia and Mattei, 2008), or

semi-parametric approaches using regression splines (Kluve et al., 2012; Bia et al., 2011).

Bia et al. (2011) compared parametric and semiparametric estimators of the outcome model,

and found that the estimated dose-response function was robust to the semiparametric ap-

proach used, while it was sensitive to parametric specification. For the estimation of the

GPS, most studies have assumed a normal or lognormal distribution, and suggested indirect

tests of the balancing property (Hirano and Imbens, 2004; Imai and Van Dyk, 2004) to as-

sess model specification. Evidence from the evaluation of binary treatments suggests that

misspecification of the propensity score and outcome models can lead to severe bias (Kang

et al., 2007). However in the GPS literature there is no research investigating the effects of

model misspecification of the GPS on the estimated dose-response function, nor comparing

the GPS and regression approaches.

We propose a framework for estimating the marginal causal effects of continuous treat-

ments, which can mitigate the problem of model misspecification. In this approach both the

GPS and the outcome model are selected in a data-adaptive way, with the Super Learner.

The Super Learner, developed by Van Der Laan and Dudoit (2003), takes the weighted com-

bination of several prediction algorithms with the aim of constructing an improved estimator.

The Super Learner has been demonstrated to reduce bias from model misspecification in bi-

nary treatment settings (Porter et al., 2011; Kreif et al., 2014), but has not been previously

combined with the GPS. The aim of this paper is to consider the Super Learner for estimating

dose-response curves, by using it for estimating the GPS, as well as modelling the relationship

between the outcome, treatment and the GPS. We compare this method to estimating the

outcome model using parametric models. We perform the same contrast for the multivariable
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regression approach for estimating the dose-response, relying only on parametric models and

then using the Super Learner.

The methods are contrasted in an empirical example, in which we evaluate the marginal

causal effect of increasing the transfer time from an emergency department to specialist

neuroscience centres for critically ill patients with traumatic brain injury (TBI). We use data

from the Risk Adjustment In Neurocritical care (RAIN) cohort study (Harrison et al., 2013).

The paper is organised as follows. Section 2 briefly describes the potential outcomes

framework for dose-response functions, and reviews the regression and GPS approaches to

estimating dose-response curves. We then introduce the Super Learner for estimating dose-

response functions. Section 3 describes the methods used in our empirical application, and

presents the results. Section 4 concludes and discusses limitations and further research.

2 Methods

2.1 Dose-response functions

Following Hirano and Imbens (2004), we define dose-response functions in the potential out-

comes framework (Rubin, 2005). Let i = 1 to n be randomly sampled units. The continuous

treatment of interest can take values in t ∈ τ . For each unit, let Yi(t) : t ∈ τ be a set

of potential outcomes, each corresponding to the outcome in a hypothetical world in which

T = t is set deterministically. This set of potential outcomes is referred to as the unit-

level dose-response function. The main parameter of interest is the average dose-response

function, µ(t) = E(Yi(t)). A further parameter of interest, which can be derived from the

previous one, is the marginal treatment effect function (Bia and Mattei, 2008; Bia et al.,

2011), capturing the effect of increasing the level of treatment on the expected potential

outcome: (E[Yi(t)]− E[Yi(t−∆t)])/∆t. For example, with ∆t = 1, the parameter captures

the incremental change in the outcome, for a unit change in the level of treatment.

For each unit, we observe a vector of covariates Xi, the level of treatment received,

Ti ∈ [t0, t1], and the observed outcome, which corresponds to the potential outcome under

the level of treatment received, Yi = Yi(Ti). The weak unconfoundedness assumption requires

the independence of the potential outcome and the observed level of treatment for each value
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of treatment: Y (t)⊥T |X for all t ∈ τ . Two additional assumptions are required. The

consistency assumption requires that the observed outcome corresponds to the potential

outcome under the treatment level received, formally, that T = t implies Y (t) = Y . The

positivity assumption requires that the conditional density of the treatment is non-negative

for any covariate values, P (r(t|X = x) > 0) = 1. These assumptions imply that after

conditioning on the observed covariates, the dose-response curve can be identified using the

observed outcomes: E [Y (t)|X = x] = E [Y |T = t,X = x].

These identification results are necessary for both the regression and GPS methods, but

these approaches differ in the way that observed covariates are adjusted for.

2.2 Regression methods to estimate the dose-response function

Regression estimators aim to model the observed outcome as a function of the treatment

level T and covariates X: Q(t, x) = E [Y |T = t,X = x], and the average dose-response is

defined as µ(t) = E[Q(t,X)]. For example, if there is only one covariate, and the outcome

is assumed to be a quadratic function of the treatment and the covariate, the conditional

expectation of the outcome given covariates and the treatment level actually received could

be estimated as E [Yi|Ti, Xi] = α0 +α1Ti+α2T
2
i +α3Xi+α4XiTi. The average dose-response

function can be obtained by taking an averaged prediction using the estimated regression

coefficients, at each treatment level of interest: µ̂(t) = α̂0 + α̂1t+ α̂2t
2 + α̂3Ê(Xi)+ α̂4Ê(Xi)t.

2.3 The generalised propensity score method

Hirano and Imbens (2004) define the GPS as follows. Let r(t, x) ≡ fT |X(t|x) be the condi-

tional density of treatment given covariates. Then the generalised propensity score is defined

as the random variable R = r(T,X), the conditional density evaluated at the treatment level

received and the covariates observed.

The key feature of the GPS is its balancing property, similar to the balancing property of

the propensity score of binary treatments. The balancing property states that, within strata

of the same value of the GPS evaluated at a given treatment level, r(t,X), the probability that

the treatment received equals this treatment level, T = t, does not depend on the values of the

covariates. This property, combined with the weak unconfoundedness assumption, implies

5



that the GPS can be used to eliminate any bias associated with differences in the observed

covariates among groups of units with different levels of treatment. It also implies that

the counterfactual expectation E(Yt) is identified as µ(t) = E[β(t, r(t,X))], where β(t, r) =

E[Y |T = t, R = r] is the conditional expectation of the observed outcome given the treatment

level and the GPS.

The estimation of dose-response curves using the GPS involves two stages. First, the

conditional density of the treatment is estimated, and the GPS is evaluated, at the level

of treatment actually received, R̂i = r̂(Ti, Xi), and for the potential levels of treatment,

R̂i
t = r̂(t,Xi).

In the second stage the conditional expectation of the outcome is estimated, given the

treatment level and the GPS, E[Y |T = t, R = r]. For example, assuming that the outcome

is a quadratic function of the treatment level and the GPS, the following regression will

be estimated: E[Yi|Ti, R̂i] = α0 + α1Ti + α2Ti
2 + α3R̂i + α4TiR̂i. Then the average dose-

response function is estimated at each treatment level of interest, by averaging the previously

estimated conditional expectation over R̂i

t
. This involves taking the estimated regression

coefficients, and obtaining predictions for each unit, by plugging in the treatment level of

interest, and the GPS evaluated at the treatment level of interest, for example: µ̂(t) =

α̂0 + α̂1t+ α̂2t
2 + α̂3Ê(R̂t

i) + α̂4tÊ(R̂t
i).

2.4 The Super Learner in estimating dose-response

The previous sections outlined the general approach for identifying and estimating the dose-

response functions using the regression, and the GPS approaches. For both methods, an

outcome model needs to be formulated, Q(t, x) for the regression, and β(t, r) for the GPS

method. For the GPS approach, the conditional density of the treatment received, r(t, x) ≡

fT |X(t|x) also needs to be specified. Models for these quantities are often fitted using the

researcher’s preferred estimation method (e.g., a parametric model). We propose to use the

Super Learner, an automated algorithm for selecting the best-performing estimator among a

library of candidate estimators.

The Super Learner (Van Der Laan and Dudoit, 2003; van der Laan et al., 2007; Polley

and van der Laan, 2010) is an ensemble prediction algorithm, exploiting machine learning.
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In general, machine learning covers a wide range of classification and prediction algorithms.

Unlike approaches that assume a fixed statistical model, for example a generalised linear

model (GLM) with a gamma error distribution and a log link, machine learning aims to

extract the relationship between the endpoint and covariates through a learning algorithm

(Lee et al., 2010). Machine learning approaches were demonstrated to reduce bias resulting

from model misspecification of the outcome model (Austin, 2012), and the propensity score

of a binary treatment (Lee et al., 2010). The Super Learner algorithm uses cross-validation

to select a weighted combination of estimates given by different prediction procedures (Polley

and van der Laan, 2010). The range of prediction algorithms are pre-selected by the user,

potentially including parametric and non-parametric regression models, and more general

prediction algorithms. Asymptotically, the Super Learner algorithm performs as well as the

best possible combination of the candidate estimators (Van Der Laan and Dudoit, 2003).

2.4.1 The Super Learner to estimate the outcome regression

The objective of the Super Learner is to consider a range of prediction algorithms for the

outcome, and construct a new estimator as a convex combination of these estimators, which

performs equal or better than any of the candidate estimators asymptotically. Let µ̂j(W ) :

j = 1, . . . , K a list of regression estimators for the conditional expectation of the outcome,

E(Y |W ). For the regression approach, the vector W includes (x, t) and in the case of the

GPS method, it consists of (r, t).

We partition the sample in V cross-validation splits. Let µj,v̄ be the j-th candidate trained

in the sample excluding split v. We apply each estimator in the training sample, and use

the estimated model to predict the outcomes in the validation sample. We compute the

cross-validated risk of each estimator, calculated as the squared prediction error,

L(µ̂j) =
1

V

V∑
v=1

1

nv

∑
i∈v

(Yi − µ̂j,v̄(Wi))
2

The Super Learner estimator is a convex combinations of the list of estimators, which

minimises the cross-validated risk. Formally, we consider the candidate Super Learner esti-
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mators

µ̂α(W ) =
∑
j

αjµ̂j(W ),

and choose α as the minimizer of L(µ̂α) constrained to αj > 0 and
∑
j αj = 1. The cross

validated risk of this estimator, referred to as the "convex super learner" can be obtained by

repeating the cross validation procedure from the first step, adding the convex Super Learner

to the list of candidate estimators (Polley and van der Laan, 2013).

2.4.2 The Super Learner to estimate the GPS

Here we modify the above algorithm, to select an estimator of the conditional density of the

treatment given covariates, by selecting a convex combination of candidate estimators, that

minimises the negative log likelihood. Let r̂j(t|X) : j = 1, . . . , K a list of GPS candidate

estimators. For example, the conditional density can be derived from modelling t as a random

variable following normal or gamma distribution. Candidate estimators can also include

variations of these with different higher order terms in the linear predictor of the mean.

We partition the sample in V cross-validation splits. Let rj,v̄ be the j-th candidate trained

in the sample excluding split v. We compute the cross-validated risk of each estimator as

L(r̂j) =
1

V

V∑
v=1

1

nv

∑
i∈v
− log rj,v̄(ti|Wi)

We consider estimator candidates of the form

r̂α(t|W ) =
∑
j

αj r̂j(t|W )

We choose α as the minimizer of L(r̂α) constrained to αj > 0 and
∑
j αj = 1. We use the

"rsolnp" package in R to perform the optimisation (Ghalanos and Theussl, 2012).

3 Empirical example

3.1 The RAIN cohort study

Acute Traumatic Brain Injury (TBI) imposes a large burden in terms of cost and mortality

(Harrison et al., 2013). An important public policy question is how best to manage critically
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ill patients following an acute TBI. In particular, there are large local variations in the time to

transferring patients from initial hospital presentation to arrival at a specialised neuroscience

centre. The primary aim of the Risk Adjustment In Neurocritical care (RAIN) study was

to validate risk prediction models for acute TBI and to use the best models to evaluate the

optimum location and comparative costs of neurocritical care in the NHS (Harrison et al.,

2013). A total of 67 critical care units participated in the RAIN study, with 3626 admitted

patients providing a highly representative sample of patients receiving critical care following

acute TBI in the UK.

An important research question the RAIN study aimed to answer was whether adult

patients with TBI without an acute neurosurgical lesion benefit from an early decision to

transfer to a neuroscience centre. The clinical literature is not conclusive about the benefits

of early transfer: while some studies suggest that in patients for whom neurosurgery is

not indicated (Bullock et al., 2006), the risks from early transfer and subsequent aggressive

protocols of care may be substantial, an alternative view is that an early decision to keep

the patient within the non-neuroscience centre can lead to delayed transfers, for example

if a critical lesion develops subsequently, with potentially higher risks (Shafi et al., 2008).

The RAIN study compared early (within 18 hours of hospital presentation) transfer to a

neuroscience centre with no or late (after 24 hours) transfer, for patients who initially present

at a non-neuroscience centre and do not require neurosurgery. It was found that at six months,

patients in the early transfer group had significantly lower mortality, however higher total

costs.

This raised a further research question of how, once the decision to transfer early had been

made, variations in transfer time affects expected costs and mortality. Exogenous variation

in transfer time is expected due to patient characteristics, local variations in management,

and delays due to logistics. By investigating the causal effect of transfer time on outcomes,

important insights may be gained for subsequent guideline development, for example on the

benefits of reducing logistical barriers to shorter transfer times.

We aim to address this research question by estimating the dose-response relationship

between transfer time and 6 month mortality, and transfer time and six months costs.
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3.2 Data

We restrict the population of interest to patients with acute TBI who presented outside of

a neuroscience centre, did not require neurosurgery, and were transferred to a neuroscience

centre within 24 hours. We define transfer time as the time in hours between admission

to the emergency department at the presenting hospital and admission to the specialist

neuroscience centre. This definition, based on consultation with a panel of clinicians, reflects

that a transfer more than 24 hours after hospital presentation implies a decision to delay

transfer, rather than an intended early transfer delayed by logistics. Transfer time consists of

the time spent at the emergency department, at an intermediate location such as a different

ward of the admitting hospital, or a different hospital that is not a neuroscience centre, and

time spent in transit between locations.

We aim to control for all variables which are potential confounders in the relationship

between transfer time and mortality, and transfer time and costs, i.e. variables which might

influence transfer time, and also affect these outcomes. We observe the prognostic variables

which might influence the clinicians’ decision on when to transfer, measured after the patient

has been stabilised, but before the decision has been made to transfer the patient. We use

the variables from the IMPACT lab model (Steyerberg et al., 2008), selected based on cross

validation in the RAIN study, including clinical factors measured after stabilising the patient

(hypoxia, hypotension, motor score, Glasgow Coma Score (GSC), pupil reactivity, Marshall

CT classification, presence of traumatic subarachnoid haemorrhage, presence of extradural

haematoma, lab measurements). Informed by clinical opinion, we include further important

potential confounders: the presence of major extracranial injury, last pre-sedation GCS,

variables indicating suspected or confirmed intoxication, age and gender. The descriptive

statistics on the key potential confounders, as well as the outcomes, are presented in Table

2.

Mortality is measured as all cause mortality at the time of the six months follow up

questionaire. Six month costs are measured by considering resource use from the first critical

care admission following the TBI, and readmissions within six months. The RAIN study

prospectively recorded the length of stay (LOS) in critical care for each admission, and

whether or not the patient had intracranial neurosurgery for evacuation of a mass lesion.
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Each item of resource use was combined with the appropriate unit cost to report a cost per

patient for each cost category in 2010–11 prices.

Missing outcome and covariate data has been addressed with multiple imputation using

chained equations.

3.3 Implementation

We estimate the dose-response relationship a) between transfer time and mortality and b)

between transfer time and costs, using regression and GPS approaches, implementing both

methods using parametric models and the Super Learner. We also test the null hypothesis

that increasing transfer time (according to units of one hour) has no effect on the expected

outcomes.

We consider a range of candidate estimators for the GPS, including normal and gamma

models with nonlinear terms and interactions in the linear predictor (see the specifications in

Table 1). We use the Super Learner to select the best convex combination of these models,

and estimate the GPS. We use these estimated GPSs throughout the analysis, both when the

outcome is modelled relying on parametric models, as well as when using the Super Learner.

Several approaches have been proposed to evaluate whether the estimated GPS satisfies

the balancing property. Imai and Van Dyk (2004) suggest regressing each covariate on the

logarithm of the treatment variable, without and with conditioning on the predicted value of

treatment given covariates. We follow the blocking approach proposed by Hirano and Imbens

(2004), and categorise the treatment variable, by k = 3 quantiles. Let Ik : k = 1, . . . , K be

the indicator of each category, and let tk be the median of each category. For each category,

we compute the GPS evaluated at the median, Rk ≡ r(tk|X). Than for each quantile, we

categorise the GPS, Rk into m blocks, again based on quantiles. For each covariate we

compare the unadjusted mean differences and corresponding t-statistics between groups of

units which belong to a treatment category versus those which do not belong to this treatment

category. We then compute the same mean differences and t-statistics, but within each GPS

block, defined above, and take the weighted mean of these mean differences, according to

number of units in each block.

Kluve et al. (2012) and Flores et al. (2012) emphasise the importance of assessing the
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common support after estimating the GPS, which can also be regarded as an indirect test

of the positivity assumption. Taking a similar approach to the balance assessment described

above, they divide the sample into groups according to the distribution of the treatment vari-

able, and evaluate the GPS at the median of each group. For example, the GPS is evaluated

at the median of the first group, for each unit in the sample, and the distribution of the GPS

is plotted for those units which actually have treatment levels belonging to this group, versus

those which have treatment values outside of these group. For each group the common sup-

port can be evaluated by inspecting the overlap of these distributions. Restricting the sample

to individuals who are comparable across the three groups simultaneously ensures common

support, however this approach can make the estimated treatment effects difficult to inter-

pret. Instead, we report overlap to flag up potential violations of the positivity assumption,

but do not drop observations.

For the outcome model, we first consider a range of parametric models, to demonstrate

the potential impact of model choice on the estimated dose-response function. For mortality,

we consider a range of logistic regression estimators, for the cost endpoint we consider GLMs

with gamma distribution and log link. For the regression approaches, we vary the linear

predictors of the models to include different degrees of polynomials of the treatment variable

and the continuous covariates, and interactions between these. Categorical covariates are

introduced as linear terms without interactions. Similarly, we vary the linear predictor in the

outcome model for the GPS approach, by including polynomials of the treatment variable,

the GPS, and their interactions (see specifications in Table 1).

We include these models in the Super Learner library, as well as a generalised additive

model (GAM) with degrees of freedom of two (Hastie, 2013), and a Bayesian GLM approach

with linear terms in the linear predictor, and non-informative priors for the coefficients (Gel-

man and Su, 2013). Each of the candidate algorithms controls for all the pre-specified po-

tential confounders. We specify a 10 folds cross validation for the Super Learner. We use

the nonparametric bootstrap to calculate uncertainty around the estimated dose-response

function and marginal treatment effect function. Bootstrap standard errors and quantiles

have been proved consistent only when the estimator converges in distribution at parametric

rates (Van der Vaart, 2000), which prevented us from using more aggressive machine learning
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predictors in the Super Learner library.

We draw 1000 bootstrap samples. In each bootsrapped dataset, we re-estimate the GPS

and the outcome model, and use these to estimate the points of the dose-response function

between t = 1 and 24, and the marginal treatment effect between t = 2 and 24, using 1

hour increments. We obtain 95% confidence intervals (CIs) of these parameters, based on

the quantiles of the bootstrap distribution. We conduct the analysis separately for the 5

multiple imputed datasets. In order to demonstrate the approach, we present results on the

first of the imputed datasets. All computation is performed using the R platform (R Core

Team, 2013).

< Table 1 around here >

3.4 Results of the empirical example

3.4.1 The estimated GPS, common support, balance

Table 2 describes the sample (n=488), while Figure 1a shows the empirical distribution of

the transfer time variable. The minimum was at 1.83, and maximum at 23.7 hours. The

Super Learner algorithm selected a mixture of the normal and gamma models for the GPS,

assigning weights of 18, 32 and 16 and 3% to the normal model candidates, while the gamma

models altogether contributed 32%.

The estimated GPS, evaluated at the treatment levels actually received is presented on

Figure 1b. Figure 2 presents the assessment of overlap in tertiles of the treatment variable:

1.83 − 5.2, 5.2 − 10.1 and between 10.1 − 23.7 hours. It appears that there is only a small

proportion of patients (2.2%) in the comparison of the middle tertile versus the others, for

whom there is a lack of overlap at values of the GPS close to zero.

< Table 2 around here >

< Figure 1 around here >

< Figure 2 around here >

Table 3 presents balance statistics as mean differences (t-statistics) before and after ad-

justment with the GPS. The IMPACT predicted mortality is a composite score expressing the

probability of mortality based on the IMPACT lab risk prediction model, and aims to capture

the baseline severity of patients. Analogously to the assessment of common support, balance
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has been evaluated for the tertiles of the treatment variable, unadjusted and then adjusted

for 5 blocks of the GPS. Patients with lower treatment levels were significantly younger,

had a lower prognostic score, and were less likely to have a major extracranial injury. After

adjustment, mean differences and t-statistics were reduced for those variables where initial

imbalance was relatively high (major extracranial injury, age, IMPACT predicted mortality),

although for some variables, for example age in the higher treatment categories, imbalance

increased.

< Table 3 around here >

3.4.2 Dose-response functions, using parametric models and the Super Learner

We estimated dose response functions for six months mortality and costs, using different

parametric specifications of the outcome model for the regression and the GPS approach

(upper panel of Figure 3). The plots suggest an increasing relationship in transfer time and

expected mortality, however, some of the models estimated a non-monotonic relationship.

For example, when the GPS approach used a quadratic term of the treatment variable in the

outcome model, as proposed by Hirano and Imbens (2004), the effect of increasing transfer

time between 12 and 18 hours appears to reduce rather than increase expected mortality.

The relationship between transfer time and costs seems to be generally U-shaped (Figure

4), however again, different models suggesting divergent curves for certain segments of the

distribution of the treatment variable.

Table 4 presents the results from the cross validation performed by the Super Learner

algorithm. The table displays the estimated MSEs of the candidate algorithms, alongside

the weight each candidate received in the final Super Learner selection, as well as the MSE

for the Super Learner estimator.

Among the parametric models, relatively simple outcome models, including linear terms

only, provided the best fit in terms of mean squared prediction error. For the mortality

endpoint, none of the parametric models from the previous, exploratory analysis received

a positive weight in the Super Learner. A combination of the Bayesian GLM prediction

algorithm, and the GAM received all weights for the regression, while for the GPS approach,

the Bayesian GLM predictor alone was given full weight. For the cost outcome, the pre-
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specified parametric models contributed positive weights in the Super Learner estimator,

together with the Bayesian GLM approach.

< Figure 3 around here >

< Figure 4 around here >

< Table 4 around here >

The lower panel of Figures 3 and 4 presents the estimated dose-response functions with the

Super Learner. For the mortality endpoint, both the regression and GPS approach suggest a

monotonically increasing relationship, while for the cost endpoint, the GPS approach suggests

that expected costs initially decrease (up to around seven hours) and then increase with

transfer time.

In this sample we found the MSE of the best single candidates was slightly lower than that

of the convex Super Learner. Because the differences are small, choosing the best candidate

estimators would provide similar dose-response functions to the convex Super Learner. In

general, van der Laan et al. (2007) suggest that for moderately large samples, such as our

study, choosing the convex Super Learner provides more stable estimates than choosing the

single best model.

Figures 5 and 6 present point estimates (95% CI) for the marginal treatment effect from

the Super Learner estimators. The CIs for the marginal treatment effect function include

zero, corresponding to a zero incremental effect of increasing transfer time on the expected

outcomes. Hence, the null hypothesis, that increasing transfer time does not have an effect

on expected six months costs or mortality, cannot be rejected, at the 5% level of statistical

significance. When comparing the width of the CIs between the regression and the GPS

approach, we find that the GPS approach reports a larger uncertainty, especially for those

areas of the data distribution where the empirical distribution of observed treatment was

sparse.

< Figure 5 around here >

< Figure 6 around here >
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4 Discussion

This paper provides a framework for estimating marginal causal effects of continuous treat-

ments that does not require the model for the GPS or the outcome regression to be correctly

specified. Instead this paper proposes that a data-adaptive method, the Super Learner, can

be applied to the GPS approach proposed by Hirano and Imbens (2004). We contrast this

approach to parametric implementations of the GPS approach. The paper also compares the

GPS approach to regression methods for estimating the dose-response function both with

parametric implementation, and using the Super Learner.

The paper illustrates the approach in an empirical example with characteristics typical of

program evaluations where the sample size is moderate, and it is necessary to control for many

binary and continuous covariates to make a plausible assumption about unconfoundedness.

We find that both the regression and the GPS approaches are sensitive to the choice of

model specification for the endpoint models, and that the estimated dose-response curves

differ by parametric specification. In this example, the Super Learner estimator assigned

small weights to nonlinear models, which suggested that the non-monotonic dose-response

functions resulting from some of the parametric models were not supported by the data.

With the Super Leaner, the regression and the GPS approaches led to the same conclusion,

namely that the marginal effect of increasing transfer time on mortality and cost was zero

(at the 5% level of statistical significance).

In this example, the GPS approach reports wider confidence intervals than the regression

approach. This is expected, as estimators using the propensity score are usually less efficient

than estimators based on a correctly specified outcome model (Vansteelandt and Daniel,

2014). This may also reflect, that in this setting it was relatively challenging for the Super

Leaner to select the combination of models that specify the covariate to treatment versus

the covariate to outcome relationship. Here, while as part of the RAIN study, an extensive

systematic review of previous outcome regression models was undertaken (Harrison et al.,

2013), there was little prior information on the form that the GPS may take.

By proposing data-adaptive estimation of the GPS and the outcome regression, this paper

builds on the GPS approach proposed by Hirano and Imbens (2004). A related extension
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is described in the working paper by Bia et al. (2011) who propose flexible, spline based

estimators for the outcome model. Using simulations, they demonstrate that their approach

outperforms parametric estimators when the dose-response function is nonlinear. However,

even a flexible spline approach requires subjective modelling choices, such as a pre-fixed

degree of polynomials and the number of knots in the spline. The Super Learner approach

can further increase flexibility, and reduce misspecification, by potentially incorporating these

estimators among the candidate predictors.

Our paper highlights a distinguishing feature of Super Learner compared to other model

selection approaches, that it combines many estimators, by selecting a combination of pre-

dictions from alternative prediction algorithms. That is, the Super Learner aims to provide

a better fit to the data than relying on any one prediction algorithm. It is recommended that

the analyst requires the Super Learner to consider a rich set of prediction algorithms (van der

Laan et al., 2007), to facilitate the consistent estimation of the dose-response function. In

selecting the candidates, subject matter knowledge of the data-generating process should be

used, for example in this paper we included models with the gamma distribution and log

link function to predict costs. Using the Super Learner for estimator selection also encour-

ages transparency in model selection, by reporting the weights and MSE of the candidate

predictors.

Our paper adds to the growing literature on the use of the Super Learner for causal

inference (Porter et al., 2011; Kreif et al., 2014; Gruber and van der Laan, 2010; Pirracchio

et al., 2014), and more generally, to the implementations of machine-learning methods in

estimating treatment effects (Lee et al., 2010; Austin, 2012). The setting of continuous

treatments posed new challenges for the Super Learner framework, in having to represent

the uncertainty in the estimator selection for both the GPS and the outcome regression,

which this work has addressed with the non-parametric bootstrap.

This paper has some limitations. First, each of the approaches relies on the assumption

of no unmeasured confounders, specifically in the context of continuous treatments, the weak

unconfoundedness assumption. This assumption requires that for any level of treatment, the

probability of receiving this level is independent of the potential outcomes, conditional on

covariates. In our empirical example, this assumption required that factors that cause delays
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in transfer, and are also prognostic of the outcomes, are controlled for. We used potential

confounders from a previously validated risk prediction model, as well as clinical opinion,

to pre-specify a set of variables. However, the possibility for unobserved confounding re-

mains, for example because the covariates are measured at the time of hospital presentation,

so subsequent changes in patients’ prognosis, which might cause delays in transfer and ef-

fect six month outcome, are unmeasured. Kluve et al. (2012) assess the robustness of the

dose-response curves to remaining unobserved confounding by also employing instrumental

variable estimation. In the absence of appropriate instruments, the effects of unobserved

confounding could be examined by extending sensitivity analysis methods to the context of

continuous treatments (Rosenbaum, 1987).

Second, in this study covariate balance following adjustment with the GPS did not im-

prove for all variables. An alternative loss function for the Super Learner could explicitly

consider a metric that takes into account the balance achieved. For the binary propensity

score, Lee et al. (2010) propose a data adaptive algorithm to estimate the GPS, based on bal-

ance measures such as the Kolmogorov-Smirnoff test. Such approaches still require subjective

choices of the appropriate balance measure, the prioratisation of confounders (Stuart, 2010),

and for continuos treatments, the method for categorising the treatment variable. Indeed,

the most appropriate balance metric remains a topic of ongoing debate (Kluve et al., 2012).

This work provokes areas of further research. Future simulation studies could examine

the sensitivity of the dose-response curve to the misspecification of the GPS, and investigate

how this misspecification can be assessed by evaluating the balancing property of the GPS.

While the regression and GPS approach lead to similar conclusions in our empirical ex-

ample, more generally, a criterion for choosing between these approaches is required. An ap-

proach for choosing between dose-response curves was recently proposed by Díaz and van der

Laan (2013), building on the principles of Super Learning. This approach requires multiple

cross-validation stages, and extensive computational times, but would provide a principled

way of choosing between candidate estimation approaches.
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Table 2: Descriptive statistics of baseline covariates and outcomes

Variable n=488

Outcomes
Dead at six months, n (%) 99 (20.3)
Six months costs (£), mean (SD) 27480 (29741)
Baseline covariates
IMPACT pred mort, mean (SD) 0.23 (0.17)
Age, mean (SD) 40.33 (17.51)
Major extr inj, n (%) 185 (37.9)
Severe GCS, n (%) 265 (54.3)
Motor score poor, n (%) 226 (46.3)
Any pupil unreactive, n (%) 76 (15.6)

Abbrevations. SD: standard deviation, IMPACT pred mort: predicted mortality from IM-
PACT risk prediction model, extr inj: extracranial injury, GCS: Glasgow Coma Score.
The following variables had missing values for n observations: dead at six months: n=18,
pupil unreactive: n=41, motor score: n=7.
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Figure 1: The distribution of (a) transfer time (hours) and (b) the estimated GPS
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The three graphs compare the distribution of GPS evaluated at the medians of the three treatment groups,
4.66, 6.93 and 12.25. The light grey histogram shows the distribution of the GPS for those who received the
treatment level of that category. The dark grey histogram shows the GPS evaluated at the same level, but
for those who received treatment of different levels. There are 122, 123 and 123 patients in each group.

Figure 2: Overlap, based on the GPS estimated at medians of tertiles of the transfer time
distribution
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The rug plots demonstrate the distribution of observed transfer times.

Figure 3: Dose-response functions of expected mortality at six months, using regression and
GPS, with parameteric models and the Super Learner
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The rug plots demonstrate the distribution of observed transfer times.

Figure 4: Dose-response functions of expected costs at six months, using regression and GPS,
with parametric models and the Super Learner
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(a) Regression approach, point estimates and 95 % CI
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The rug plots demonstrate the distribution of observed transfer times.

Figure 5: Dose-response function and marginal treatment effect function of expected mortal-
ity at six months, using the Super Learner
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(a) Regression approach, point estimates and 95 % CI
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(b) GPS approach, point estimates and 95 % CI
The rug plots demonstrate the distribution of observed transfer times.

Figure 6: Dose-response function and marginal treatment effect function of expected costs
at six months, using the Super Learner
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